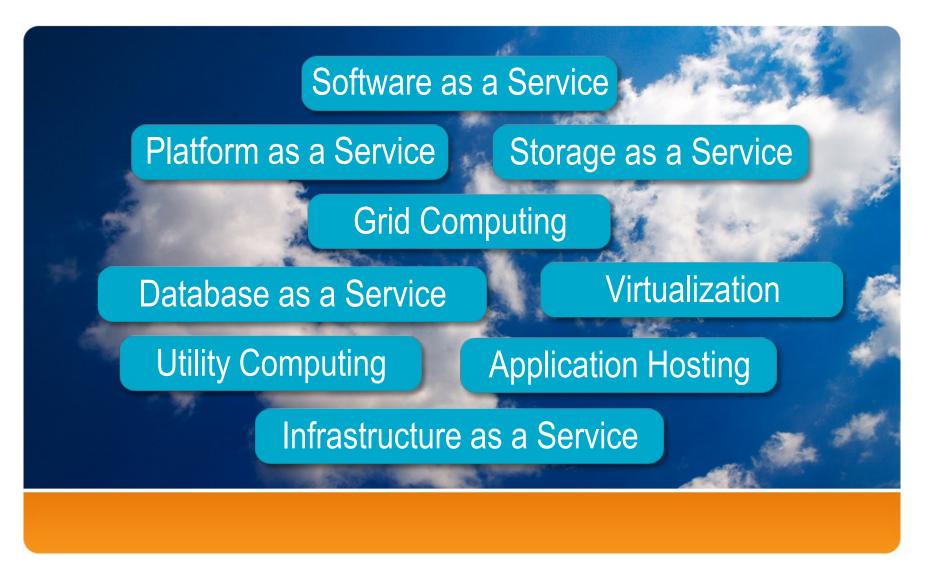


Cloud Computing

Bill Vass
President/COO
Sun Microsystems Federal, Inc.


"Recovering CIO" bill.vass@sun.com

blogs.sun.com/BVass

Everyone is Talking About Cloud Computing

IDC on Cloud Computing:

"This is about the IT industry's new model for the next 20 years."

Vernon Turner, head of enterprise infrastructure, consumer and telecoms research.

"...reliable services delivered through data centers ... accessible anywhere that has access to networking infrastructure.

The Cloud appears as a single point of access for all the computing needs..."

It's Not Just About Cheap Computing

Efficiency

Economics

- Pay as-you-go
- Op-ex vs. Cap-ex
 - SLA
 - Virtualization

Developer Centric

Rapid,
self provisioning
Faster deployment
Self service
API-driven

Flexibility

- Standard services
 - •Elastic
 - On demand
 - Multi-tenant

Changing IT Relationships

Developers

Deployers

- Why won't IT support this?
- Why can't I use the versions I want?
- Why can't I get better availability?
- How can I pay for what I need?
- How quickly can I get more servers?

- Why do we have so many versions of everything?
- Where can I cut costs?
- How can I do finer grain provisioning?
- Where do we enforce security, regulation and audit?

Driving IT Agility

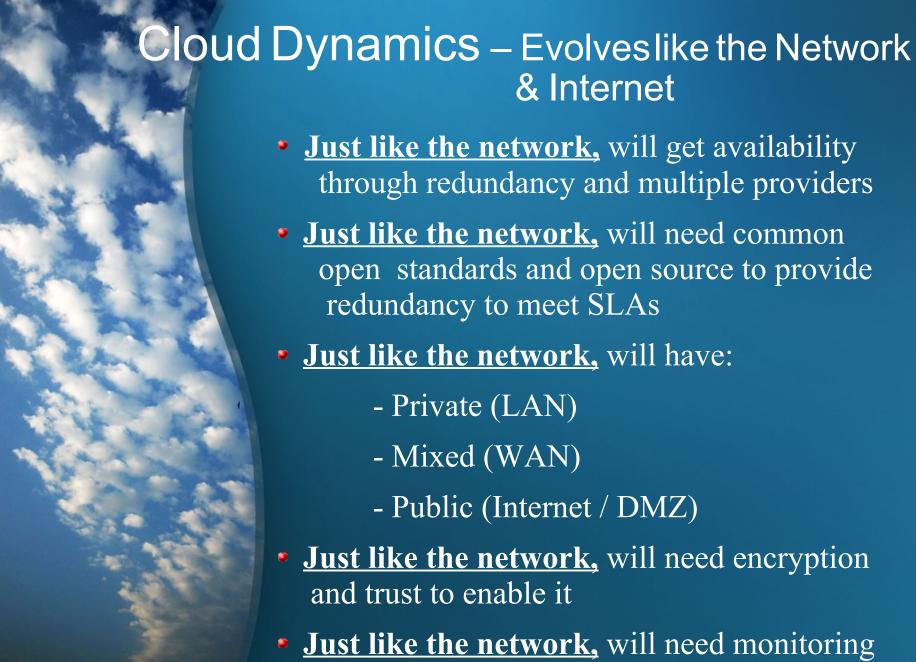
Current State

- Commercial software packages
- Relational data
- Management
- Server-scale

Trend

- Open source communities
- Unstructured, rich data
- Analytics
- Network data center-scale

All Clouds Share Key Traits



different

Layers

Business Models

Application Domains

• Just like the network, will need monitoring and security management

Types of Cloud Computing

Cloud Storage

- Encrypted on the way out, Decrypted on the way in.
- Many different SLAs and types

Application Cloud

- Encrypted communication
- Application server threads
- Stateless (most common) and Stateful

Infrastructure VM Cloud

- Encrypted Communication
- Windows, Linux, Solaris OS Images
- Full Applications, Virtual Servers, Virtual Desktops (Stateless clients)

Cloud Computing Layers

Software as a Service

Applications offered on-demand over the network (salesforce.com)

Platform as a Service

Developer platform with built-in services (Google App Engine, Microsoft Azure Platform)

Infrastructure as a Service

Basic storage and compute capabilities offered as a service (Amazon web services, Microsoft's Cloud Infrastructure Services, Mosso)

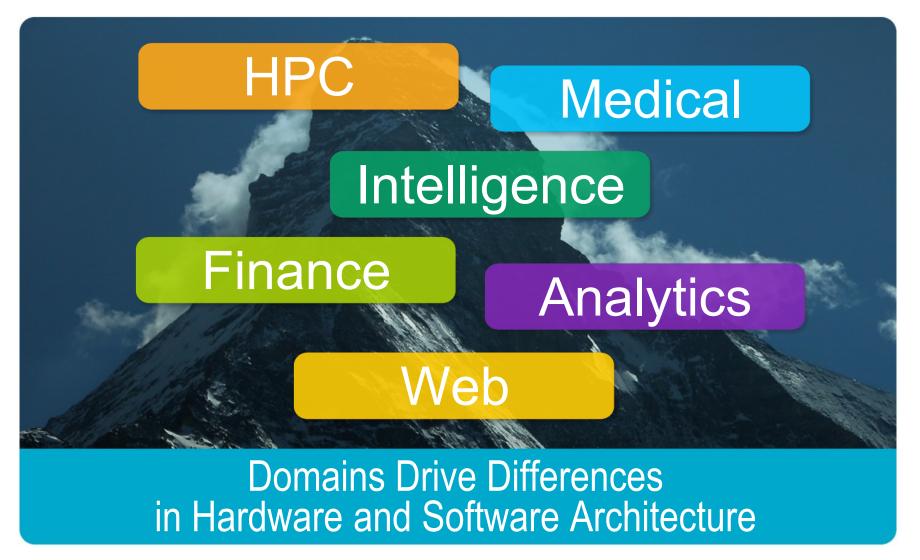
Business Models

Public

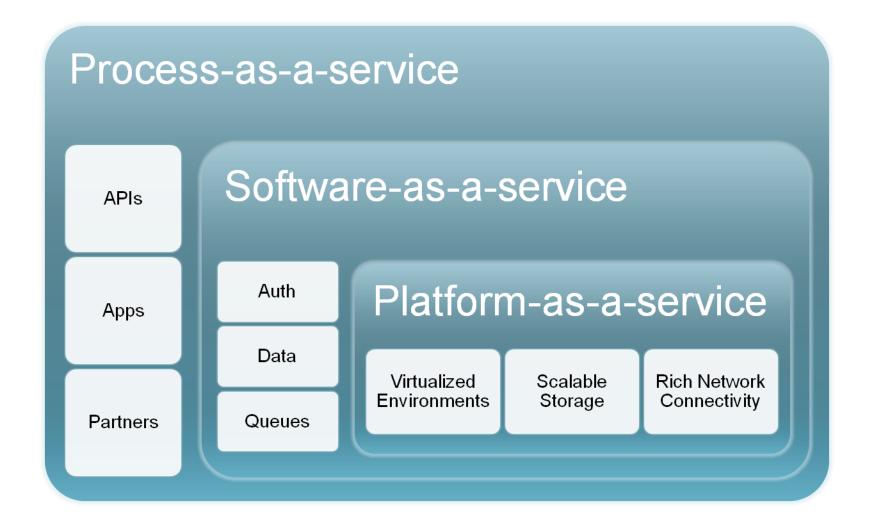
You don't know who else is on the same server, network or disk that you are

Private

You own the server, network and disk, and decide who gets to run on it with you


Hybrid

You own some parts and are sharing some parts, though in a controlled way



Application Domains

The Cloud - Under the Hood

Cloud Platforms, Compared

	AWS	AppEngine	Sun Cloud
Storage	S3, EBS	SimpleStorageAPI	Luster
Database	SimpleDB	CouchDB	MySQL
Queue	SQS		JavaSMQ
Virtualization	EC2 (Xen)		xVM OpsCenter
Framework		Django	JCAPS
User Accounts		Google Accounts	IDM Open SSO
Search		Google Search	SOLR+Lucene
Desktop		GoogleDocs?	SSR, VB, ODF
CDN/Cache	CloudFront		Varnish

Cloud Dynamics

Cloud as "Bow-Wave of Change"

Virtualization

Social Networks

Mashups, DIY Tools

Exponential Change

Tech-savvy customers

Tech-savvy employees

Consumerization / Web 2.0

Cloud Computing

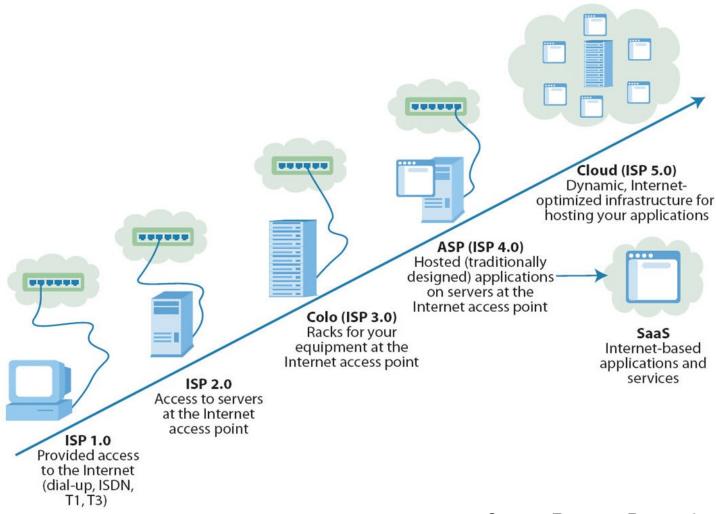
Public Infrastructure

Global Collaboration

Cultural Change

Security

Mobility

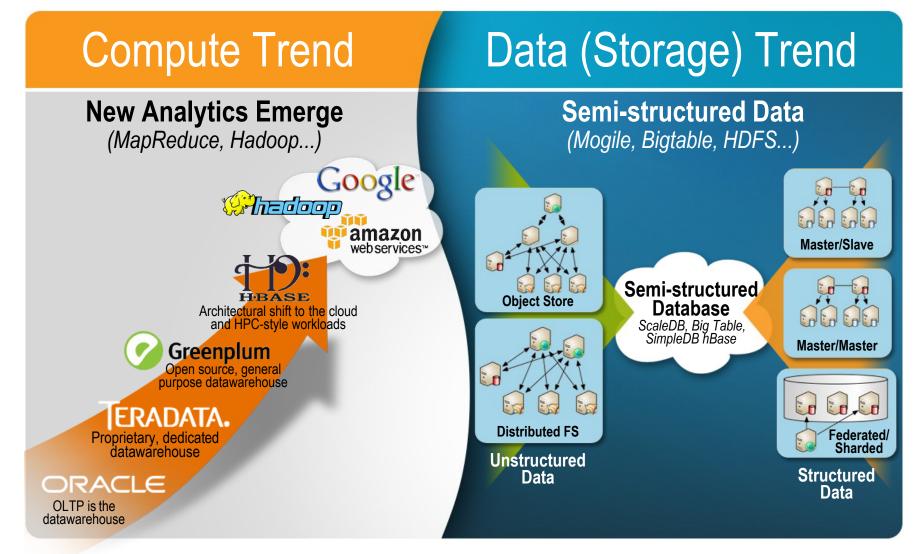

Green

- Employees
- Missions / Data Products
- Business Operations
- Partners / Collaborators
- The Public

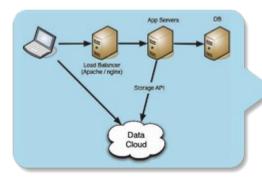
Source: Doug Neal, CSC

Cloud as "Evolution of Hosting"

Source: Forrester Research



Changing Software Economics



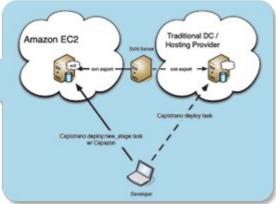
New Data and Management Economics

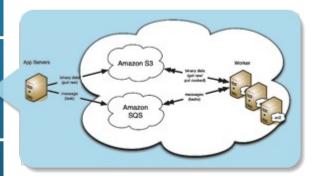
Emerging Cloud Deployment Patterns

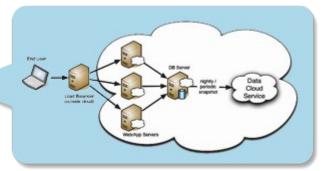
App Somers

Lead Brances

Disabese


Test and Development


Functional Offload (Batch Processes – *TimesMachine*)


Functional Offload (Storage – SmugMug)

Augmentation (Temporary Load – *Animoto*)

Web Service

Cloud Ownership Models

the Cloud (no datacenter ownerships)

the Cloud

BUILD My Own Internal Cloud

- Startup
- SMB
- Research projects

- Temporary on-demand load
- Functional off-load

- Enterprise infrastructure grid
- Drive internal IT economics
- Standardized development environment/ services

- Redefine services
- New business offerings
- Hosting and operations partners
- Software vendors

Concerns of Cloud Layers

Developers/ laaS PaaS SaaS Deployer Tradeoffs API-driven User Tradeoffs at Reliability, provisioning load balancing, each layer experience security dominates subsumed Loose coupling Data privacy, of other retention, services recovery aspects

Evolving Service Levels

Reliability, Availability, Serviceability (RAS)

- Focused on state recovery
- Low slew rate of demand or change

Network Scale Service Level Demands (PIPE)

- Predictability: SLAs under high rate of change
- Integrity: Security, compliance, correctness
- Productivity: Agility and time to service
- Efficiency: Throughput/\$, work/watt

Examples

Results 1 - 10 of about 19,500,000 for cloud computing.

Cloud computing security: Who knew?

Computerworld - 11 hours ago

By Scott Bradner April 27, 2009 (Networks than perfect agreement on just w

DMTF Group to Create Cloud Computing Spec

eWeek - 13 hours ago

The Distributed Management Task Force is creating a groumanagement standards for cloud computing. ...

Open Standards For The Cloud SYS-CON Media (press n

SAS to build USD 70 million cloud computing facility

Al-Bawaba - Apr 26, 2009

SAS, the leading provider build a USD 70 million clc

Hosting.com Partners with VMware to Deliver Cloud Trial C

HostSearch.com - Apr 26, 2009

As part of the VMware vCloud initiative, developers, IT professionals, SI are invited to experience Cloud Computing firsthand with 30 days ...

Operating system for building the internal cloud Help Net Security

TAKO internation with MA were workers A for your properties. A RAT 1-6

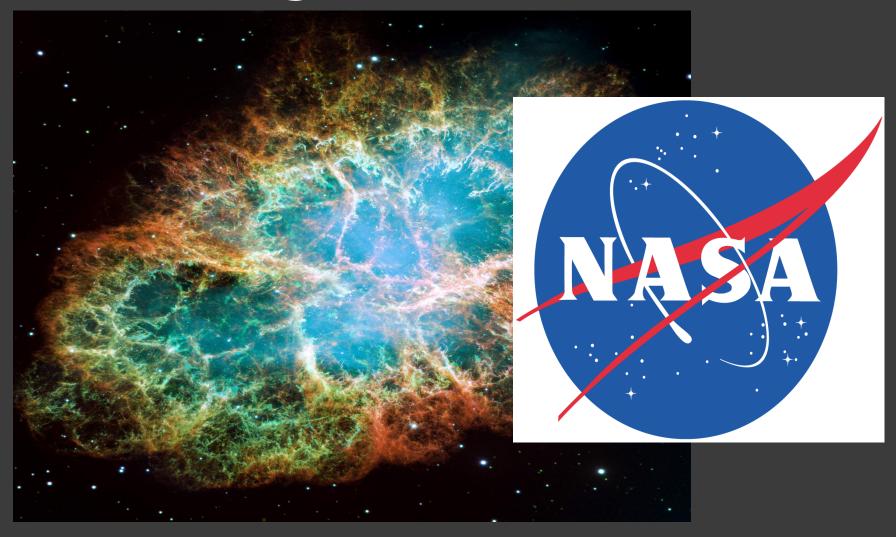
Fourteen universities to study cloud computing with \$5M NSF grant

Geek.com - 10 hours ago

The program works with IBM and Google look at the infrastructure requirements to

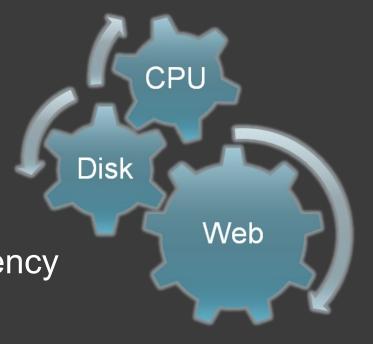
Fujitsu Launches Cloud Services

Japan Corporate News (press release) - Apr 26, 2009


Fujitsu is seeking to address this issue by providing its Truster has the following features. ...

Heading Back to Cloud Col

SYS-CON Media (press release) - z nours ago


The merger does make Sun very relevant again, as its hardware in the coming Cloud Computing deployment battle. ...

Introducing NASA NEBULA

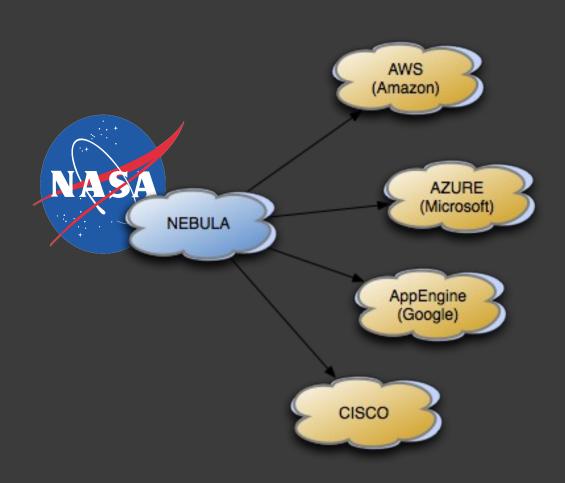
NEBULA - Built for Science

- Science-Class Cloud Computing
 - High CPU-to-Disk Ratio
- Built for Research
 - Fastest networks in the Agency
 - Massively Parallel, Loosely Coupled

NEBULA - Built for Collaboration

- True Single-Sign-On, for the Public
- Enterprise Search, across the Cloud
- All Cloud apps live at apps.nasa.gov

NEBULA - Built for the Web


- Friendly URLs
- Designed for Search Engines, RSS, and aggregation
- It's RSSable, Tweetable

What if NASA was on the first page of Google results for the term 'Space'?

NEBULA - Built for Partners

- Your science partners can instantly connect from your NEBULA app, to their own research tasks within public Cloud Services (EC2, Azure, AppEngine)
- Your private fleet of Post-Docs can work on your data – at 10 cents an hour

NEBULA - Built for Partners

NEBULA – Built for Government

- Policy compliant for contributions
- Consolidated moderation interface
- Everything-compliant (PII, First Amendment, COPPA, Section 508, etc)

What is NEBULA?

Software Hardware Networks Workflow

Cloud Platforms, Compared

	AWS	AppEngine	NASA Nebula
Storage	S3, EBS	SimpleStorage API	Luster
Database	SimpleDB	CouchDB	MySQL
Queue	SQS		RabbitMQ
Virtualization	EC2 (Xen)		Eucalyptus
Framework		Django	Django
User Accounts		Google Accounts	eAuthentication
Search		Google Search	SOLR+Lucene
Desktop		GoogleDocs?	
CDN/Cache	CloudFront		Varnish

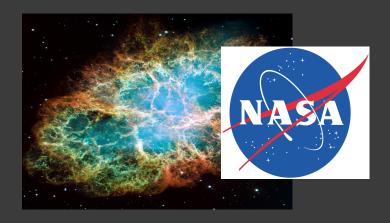
Application Time to Market

Current Web App Process	NEBULA Cloud Platform	
Procure Server – 6-12 weeks	Procure VM – 60-120 seconds	
Configure Server – 2-3 days	Included.	
AWRS Filing – 2-3 days	Already done.	
Set up Source Control – 2-3	Included.	
Security Plan – 3 weeks, min.	Included.	
SSL Certificates – 2-4 weeks.	Included.	
Develop Terms of Use – 6	Included, for most collaboration.	
eAuth Integration – 40 hours.	Included.	
Develop Processes – 3-6	Basic moderation included.	
Set up backups – 2-3 hours.	Included.	
24,192,000 Seconds.	60-120 Seconds.	

Cost Efficiencies

- No upfront capital expense
- Just-in-time capacity management
- 10^2 Cheaper (than what we do now)...

NEBULA - Designed for the Future


- Open standards are critical to the growth of cloud computing and open source software has provided the foundation for many cloud computing implementations." – Barack Obama
- NEBULA is 100% Open Source

NEBULA - the way to Data.gov

- Best practices in moderation, open collaboration
- Open and Public APIs, everywhere
- Feeds (RSS, Atom) power mash-ups
- Open-source platform, apps, and data
- Fully transparent (we dogfood)

NASA NEBULA Timeline

- Under development since May 2008 (under codename NASA.NET)
- Now accepting a limited number of additional partners for Summer, '09
- Full Launch, 2010

WHY
SUN
for cloud
computing?

Innovation and Choice

Sun's Vision

Focusing on Network Transparent Computing Since 1984

Sun's Cloud Computing Strategy

OpenSPARC

Q-layer

Joyent

Partners

Expertise and Services

How Sun Supports Different Approaches

- Public clouds
- Private clouds (owned and operated)
 - Customers to run compatible services
 - Patterns, tools, services, software components, data center design expertise, optimized systems and storage products
- Partner or hosted clouds
 - Offer software for service providers and ISVs to reach additional customers and offer compatible variations
- Common elements
 - > Partnerships, communities and open approach

Next Steps

Getting Started

Developers

- Application inventory
 - Reliability at application or system level?
 - Languages, VMs, tools
- > Developer inventory
 - Internal, communities, partners
- > API inventory
 - Where can new abstractions be inserted?
 - What are deployment mechanisms?

Data

- Re-factor storage requirements
 - Move storage into the network
 - Structured, semi-structured, relational
- Analytics foundation
 - All (potential) sources of data
- Regulatory, security, privacy assessments
 - Access control, audit, assured destruction

How SUN can help

www.sun.com/cloud

- Cloud Assessment Services
- Architectural expertise
- Alignment of IT infrastructure goals to business driver
- Industry best practices and proven methodologies to create value-added solutions
- Cloud Workshops
- Gather business requirements
- Create a high level architecture
- Specifics
- Sun startup essentials
- Channel partner programs
- ISV programs
- Sun learning services
- Feedback to Sun
- Plans in development around a public cloud
- Open Solaris on EC2

Thank You...

Bill Vass
President/COO
Sun Microsystems Federal, Inc.

"Recovering CIO"
bill.vass@sun.com
blogs.sun.com/BVass

Sun Examples

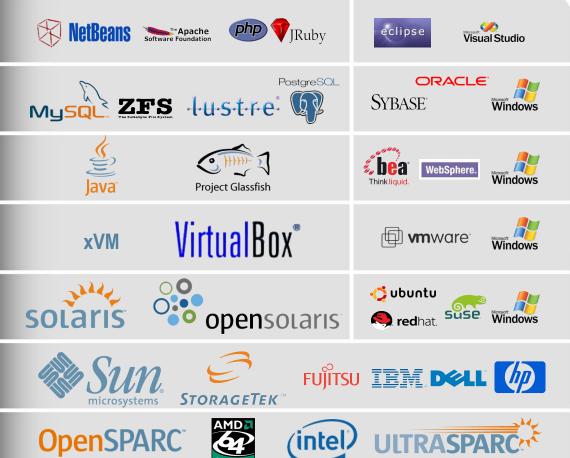
Comprehensive OPEN Portfolio Delivering Customer Choice

Developer Environment

Database/ Storage Platform

Application Infrastructure

Virtualization


Operating System

Systems

Servers Storage Networking

Microprocessor

R

Sun Virtualization Solutions

DESKTOP TO DATACENTER

innovation – highly integrated to increase efficiencies, security and performance

Virtualization
 BUILT-IN
 and freely available

CHOICE

in virtualization technologies + management of your heterogeneous environments

PROVEN EXPERTISE

to design, implement, optimize and manage enterprise quality dynamic datacenters

Sun Open Storage

Bringing Simplicity to Cloud Storage

Open Storage and **Archive**

- Lower costs with general purpose systems and Open Software
- Seamless integration with existing environments
- Open architectures will free users from vendor lock-in
- Simple data administration
- Storage analytics provide sophisticated, real-time visualization

Dynamic scale with flexible building blocks

Superior performance

Manage more for less

NY Times: TimesMachine

- Massive data archives
 - Every newspaper from 1851 to 1922
 - http://timesmachine.nytimes.com
- Utilizes Amazon Web Services (public cloud) and Hadoop (OpenSolaris)
- 405,000 very large TIFF images, 3.3 million articles in SGML and 405,000 xml files -> converted to a more web-friendly 810,000 PNG images and 405,000 JavaScript files
- Created in 36 hours

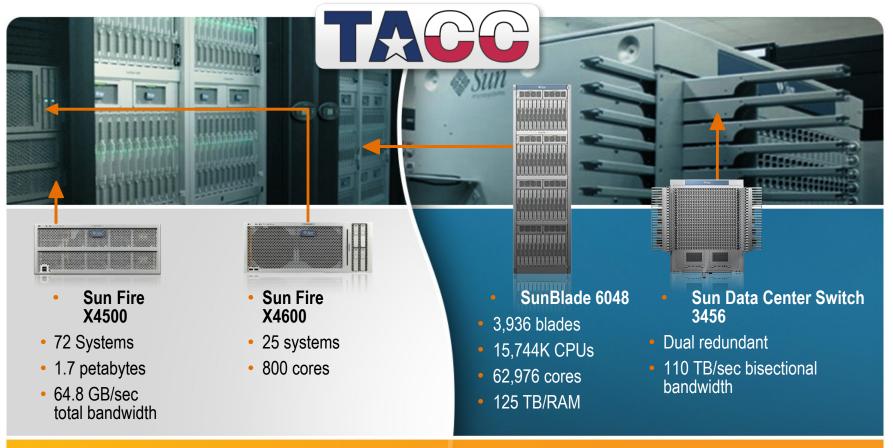
Public Cloud Built on Open Source Innovation

- Amazon EC2 expanding customer choice with access to innovative opensource software
 - Open Solaris ZFS and Dynamic Tracing (DTrace)
 - Sun/MySQL Support for Linux
 - > Java
 - > Hadoop on Open Solaris
- Enhanced options quick deployment

Using Sun Technologyfor Highly Efficient Scaling

JOYENT

provides Cloud Computing infrastructure and services to Web 2.0 developers and Fortune 500 companies


Online Infrastructure provider offers hosted storage business with low-cost combined storage and server technology from Sun

Accelerators

- Virtualized servers deployed within an ecosystem of the highest grade networking and routing fabric available
- Highly scalable on-demand infrastructure for running web sites, including rich web applications written in Ruby on Rails, PHP, Python and Java
 - Partnering with Sun
- Built using OpenSolaris' Containers Virtualization Technology
- Joyent runs on Sun's CoolThreads and AMD Opteron-based servers running OpenSolaris
- Sun technology allows Joyent to give users and developers access to a great platform at a low price, and offers Web 2.0 developers a powerful environment where they can scale their applications

TACC: World's Top Supercomputer

- The world's largest largest computing system in the world for open science research
- Sun Constellation Linux Cluster and Sun StorageTek Mass Storage Facility
- 579.4 Tflops peak performance